

PSYC214: Statistics Lecture 4 – One-factor within-participants ANOVA – Part I

Michaelmas Term Dr Sam Russell s.russell1@lancaster.ac.uk

One factor within-participants ANOVA

Agenda/Content for Lecture 4

- Introduction to one factor withinparticipants ANOVA and its limitations
- Between-participant variability and residual variance
- Calculating within-group and between group variances
- Producing the within-participants F-statistic

Between-participants

Within-participants

Within-participants design - limitations

Туре	Definition	An example
Practice effects	The experience/performance on a task at a given point in time, may influence your performance of that task at a subsequent time.	

Within-participants design - limitations

	Туре	Definition	An example
Order effects	Practice effects	The experience/performance on a task at a given point in time, may influence your performance of that task at a subsequent time.	
	Fatigue effects	Fatigue or boredom with a task may influence your performance of that task at a subsequent time.	

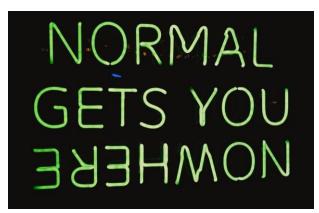
Within-participants design - limitations

		Туре	Definition	An example
Order effects	Order	Practice effects	The experience/performance on a task at a given point in time, may influence your performance of that task at a subsequent time.	
	effects	Fatigue effects	Fatigue or boredom with a task may influence your performance of that task at a subsequent time.	
		Demand characteristic	Participants form an idea of the experiment's purpose and (sub)consciously change their behaviour to comply	

Assumptions underlying the W-P ANOVA

1. Assumption of **independence**

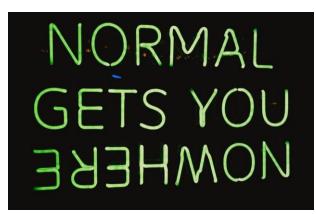
Independence


Assumptions underlying the W-P ANOVA

- 1. Assumption of independence
- 2. Assumption of **normality**

Independence

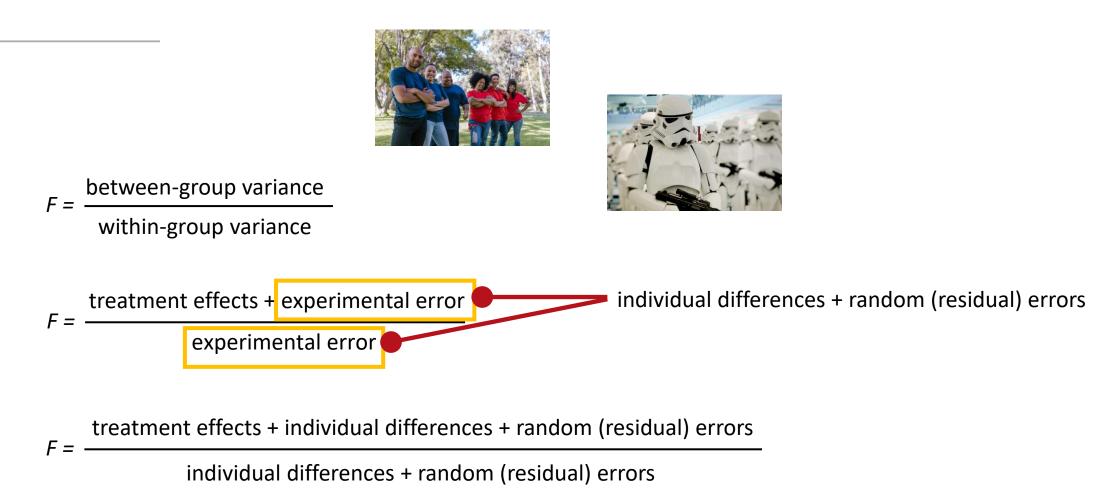
Assumptions underlying the W-P ANOVA



- 1. Assumption of independence
- 2. Assumption of normality
- 3. Assumption of **sphericity**

The variances of the differences between all combinations of related groups are equal

Independence


Normality

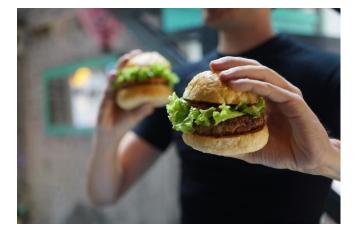
Sphericity

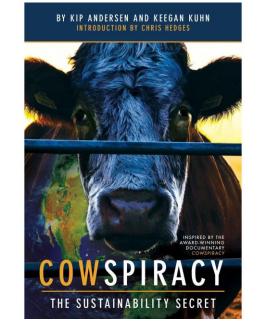
Between-participants F ratio

Within-participants F ratio

 $F = \frac{\text{between-group variance}}{\text{within-group variance}}$

random (residual) errors


The F ratio



The larger in magnitude the F value, the more treatment effects are standing out away from experimental error – i.e., the larger the signal is from the noise. The larger the F, the less likely that differences in scores are caused by chance.

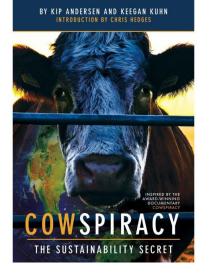


Table 1. Burgers consumed before (A1)	and after (A ₂) Cowspiracy
---------------------------------------	--

	Aı	A2	ΔA	P Mean
P1	3	1	-2	2
P2	5	3	-2	4
Рз	4	2	-2	3
P 4	5	3	-2	4
P 5	5	3	-2	4
A Mean	4.4	2.4	-2	

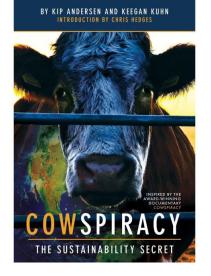


Table 2. Burgers consumed before	(A1) and after (A2) Cowspiracy
----------------------------------	--------------------------------

	A1	A2	ΔA	P Mean
P1	1	3	2	2
P2	3	5	2	4
Рз	2	4	2	3
P4	3	5	2	4
P 5	3	5	2	4
A Mean	2.4	4.4	2	

	A1	A2	ΔA	P Mean
P1	3	1	-2	2
P2	5	4	-1	4.5
Рз	4	1	-3	2.5
P4	5	1	-4	3
P5	5	3	-2	4
A Mean	4.4	2	-2.4	

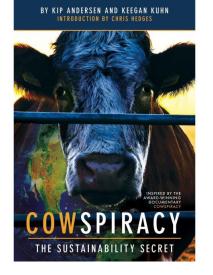


Table 4. Burgers consumed be	efore (A1) and after	(A ₂) Cowspiracy

	A1	A2	ΔA	P Mean
P1	3	5	2	4
P2	5	4	-1	4.5
Рз	4	5	1	4.5
P4	5	1	-4	3
P 5	5	5	0	5
A Mean	4.4	4	-0.4	

Between-participant variability

Table 5. Burgers consumed before (A1) and after (A2) Cowspiracy					
	A1	A2	ΔA	P Mean	
P1	5	3	-2	4	
P2	9	7	-2	8	
Рз	3	1	-2	2	
P4	7	5	-2	6	
P5	4	6	2	5	
A Mean	5.6	4.4		5	

High between-participant variability

The extent to which participants, on average, differ from another regardless of their stage of the experiment

 In this example, there is high variability between participant means.

Between-participant variability

The extent to which participants, on average, differ from another regardless of their stage of the experiment

- In this example, there is zero variability between participant means.
- Zero differences = zero variance.

Low between-participant variability

Table 6. Burgers consumed before (A1) and after (A2) Cowspiracy

0		· · · ·	<u> </u>	
	A1	A2	ΔA	P Mean
P1	9	1	-8	5
P2	5	5	0	5
Рз	4	6	2	5
P4	6	4	-2	5
P5	4	6	2	5
A Mean	5.6	4.4		5

Between-participant variability

Table 5. Burgers consumed before (A1) and after (A2) Cowspiracy				
	A1	A2	ΔA	P Mean
P1	5	3	-2	4
P2	9	7	-2	8
Рз	3	1	-2	2
P4	7	5	-2	6
P5	4	6	2	5
A Mean	5.6	4.4		5

High between-participant variability

Table 6. Burgers consumed before (A1) and after (A2) Cowspiracy

	Aı	A2	ΔA	P Mean
P1	9	1	-8	5
P2	5	5	0	5
Рз	4	6	2	5
P4	6	4	-2	5
P 5	4	6	2	5
A Mean	5.6	4.4		5

Low between-participant variability

Residual variance

Table 5. Burgers consumed before (A1) and after (A2) Cowspiracy						
	A1	A2	ΔA	P Mean		
P1	5	3	-2	4		
P2	9	7	-2	8		
Рз	3	1	-2	2		
P4	7	5	-2	6		
P 5	4	6	2	5		
A Mean	5.6	4.4		5		

High between-participant variability / Low residual variance

Residual variance

Table 5. Burgers consumed before (A1) and after (A2) Cowspiracy					
	A1	A2	ΔA	P Mean	
P1	5	3	-2	4	
P2	9	7	-2	8	
Рз	3	1	-2	2	
P4	7	5	-2	6	
P5	4	6	2	5	
A Mean	5.6	4.4		5	

High between-participant variability / Low residual variance

The variability in the consistency of trends

- In this example, these trends overall are pretty consistent.
- [-2, -2, -2, -2, 2].
- Most are same direction and -2 in difference.
- As such, the residual variance is said to be low

Residual variance

The variability in the consistency of trends

- In this example, there trends are very inconsistent.
- [-8, 0, 2, -2, 2] = widespread.
- As such, the residual variance is said to be high.

Low between-participant variability / **High** residual variance

Table 6. Burgers consumed before (A1) and after (A2) Cowspiracy

0		· · · ·		/ 1 /
	A1	A2	ΔA	P Mean
P1	9	1	-8	5
P2	5	5	0	5
Рз	4	6	2	5
P4	6	4	-2	5
P 5	4	6	2	5
A Mean	5.6	4.4		5

Summary

Table 5. Burgers consumed before (A1) and after (A2) Cowspiracy					
	A1	A2	ΔA	P Mean	
P1	5	3	-2	4	
P2	9	7	-2	8	
Рз	3	1	-2	2	
P4	7	5	-2	6	
P 5	4	6	2	5	
A Mean	5.6	4.4		5	

High between-participant variability / Low residual variance

Table 6. Burgers consumed before (A1) and after (A2) Cowspiracy					
	Aı	A2	ΔA	P Mean	
P1	9	1	-8	5	
P2	5	5	0	5	
Рз	4	6	2	5	
P4	6	4	-2	5	
P 5	4	6	2	5	
A Mean	5.6	4.4		5	

Low between-participant variability / **High** residual variance

PSYC214: Statistics Lecture 4 – One-factor within-participants ANOVA – Part II

Michaelmas Term Dr Sam Russell s.russell1@lancaster.ac.uk

Summary

Table 5. Burgers consumed before (A1) and after (A2) Cowspiracy					
	A1	A2	ΔA	P Mean	
P1	5	3	-2	4	
P2	9	7	-2	8	
Рз	3	1	-2	2	
P4	7	5	-2	6	
P 5	4	6	2	5	
A Mean	5.6	4.4		5	

High between-participant variability / **Low** residual variance

Table 6. Burgers consumed before (A1) and after (A2) Cowspiracy				
	A1	A2	ΔA	P Mean
P1	9	1	-8	5
P2	5	5	0	5
Рз	4	6	2	5
P4	6	4	-2	5
P5	4	6	2	5
A Mean	5.6	4.4		5

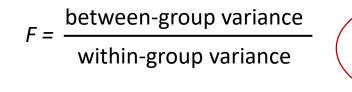
Low between-participant variability / High residual variance

Within-participants F ratio

Ways in which people can differ:

- Overall level of performance/score
- Trends in their scores (/)
- Both!

One factor within-participants ANOVA


Between-participant variability vs Residual variance

- In virtually all within-participant studies, we hypothesise that a score at one time would significantly differ from at another time.
- Less interested in the actual change in scores and not interested in between participant differences.
- As such, we are more interested in the residual variance than the between participant variability.

Within-participants F ratio

residual variance

We calculate the F ratio in a similar way as for the between participants design, with the exception that we are not interested in how participants vary from one another!

We therefore include an additional step to remove the between-participant variability (we spoke of before) from the error term.

We remove the between-participant variability from the within-group variability – leaving only random errors behind – a.k.a., the residual variability

Ingredients of within-participants ANOVA

Participant	A ₁ scores	A ₂ scores	A ₃ scores
1	2	3	5
2	1	4	4
3	3	5	6
4	2	6	5
5	2	3	3
6	1	5	6
7	4	7	7
8	3	3	6
9	2	5	6
Total	20	41	48

residual variance

Ingredients of within-participants ANOVA

Participant	A ₁ scores	A ₂ scores	A ₃ scores
1	2	3	5
2	1	4	4
3	3	5	6
4	2	6	5
5	2	3	3
6	1	5	6
7	4	7	7
8	3	3	6
9	2	5	6
Total	20	41	48

$$SS_{BETWEEN} = \frac{(\Sigma A_1)^2 + (\Sigma A_2)^2 + (\Sigma A_3)^2}{N_A} - \frac{(\Sigma Y)^2}{N}$$

$$SS_{WITHIN} = \Sigma Y^2 - \frac{(\Sigma A_1)^2 + (\Sigma A_2)^2 + (\Sigma A_3)^2}{N_A}$$

$$SS_{TOTAL} = \Sigma Y^2 - \frac{(\Sigma Y)^2}{N}$$

SS-Between groups

Participant	A ₁ scores	A ₂ scores	A ₃ scores
1	2	3	5
2	1	4	4
3	3	5	6
4	2	6	5
5	2	3	3
6	1	5	6
7	4	7	7
8	3	3	6
9	2	5	6
Total	20	41	48

 $SS_{BETWEEN} = \frac{(\Sigma A_1)^2 + (\Sigma A_2)^2 + (\Sigma A_3)^2}{N_A}$ - $(\Sigma Y)^2$ Ν

SS-Between groups

Participant	A ₁ scores	A ₂ scores	A ₃ scores
1	2	3	5
2	1	4	4
3	3	5	6
4	2	6	5
5	2	3	3
6	1	5	6
7	4	7	7
8	3	3	6
9	2	5	6
Total	20	41	48

$SS_{BETWEEN} =$	$\frac{(\Sigma A_1)^2 + (\Sigma A_2)^2 + (\Sigma A_2)^2}{N_A}$	$\frac{(\Sigma Y)^2}{N} - \frac{(\Sigma Y)^2}{N}$
$SS_{BETWEEN} =$	$\frac{(20)^2 + (41)^2 + (48)^2}{9}$	(109) ² 27
$SS_{BETWEEN} =$	<u>400 + 1681 + 2304</u> <u>9</u>	<u>11881</u> 27
$SS_{BETWEEN} =$	44.44 + 186.77 + 256.0	0 – 440.03

 $SS_{BETWEEN} = 487.21 - 440.03$

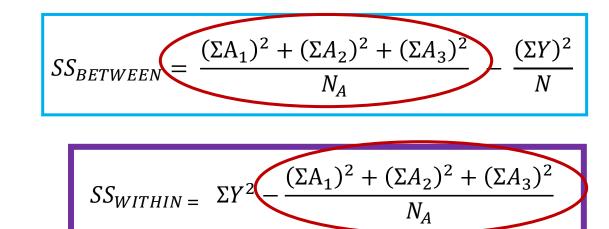
 $SS_{BETWEEN} =$ 47.18

35

Ingredients of within-participants ANOVA

Participant	A ₁ scores	A ₂ scores	A ₃ scores
1	2	3	5
2	1	4	4
3	3	5	6
4	2	6	5
5	2	3	3
6	1	5	6
7	4	7	7
8	3	3	6
9	2	5	6
Total	20	41	48

$$SS_{BETWEEN} = 47.18$$


$$SS_{WITHIN} = \Sigma Y^2 - \frac{(\Sigma A_1)^2 + (\Sigma A_2)^2 + (\Sigma A_3)^2}{N_A}$$

$$SS_{TOTAL} = \Sigma Y^2 - \frac{(\Sigma Y)^2}{N}$$

Participant	A ₁ scores	A ₂ scores	A ₃ scores
1	2	3	5
2	1	4	4
3	3	5	6
4	2	6	5
5	2	3	3
6	1	5	6
7	4	7	7
8	3	3	6
9	2	5	6
Total	20	41	48

$SS_{WITHIN} = \sum Y^{2} - \frac{(\Sigma A_{1})^{2} + (\Sigma A_{2})^{2} + (\Sigma A_{3})^{2}}{N_{A}}$ $SS_{WITHIN} = 523 - \frac{(20)^{2} + (41)^{2} + (48)^{2}}{9}$ $SS_{WITHIN} = 523 - \frac{400 + 1681 + 2304}{9}$

SS_{WITHIN} = 523 - 487.21

 $SS_{WITHIN} = 35.79$

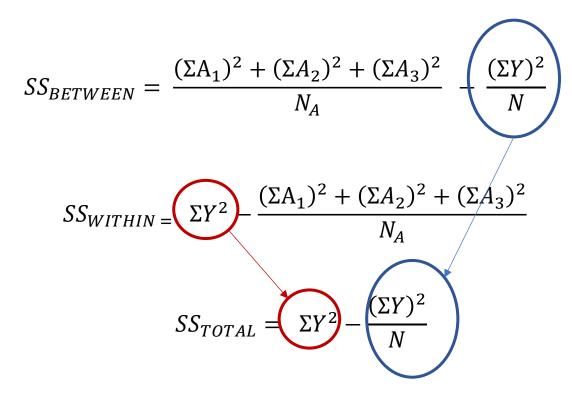
SS-Within group

Participant	A_{1^2} so	core	S	A_{2^2} so	ore	S	A_{3^2} scores			
1	2² :	4		3² =	9		5² =	25		
2	1² :	1		4² =	16		4² =	16		
3	3² :	9		5² =	25		6² =	36		
4	2² :	:4		6² =	36		5² =	25		
5	2² :	: 4		3² =	9		3²	= 9		
6	1²=	1		5² =	25		6² =	36		
7	4² =	16		7² =	49		7² =	49		
8	3² :	9		3² =	9		6² =	36		
9	2² :	: 4		5² =	25		6² =	36		
Total	20			42	1		48			

Participant	A ₁ scores	A ₂ scores	A ₃ scores
1	2	3	5
2	1	4	4
3	3	5	6
4	2	6	5
5	2	3	3
6	1	5	6
7	4	7	7
8	3	3	6
9	2	5	6
Total	20	41	48

 $SS_{BETWEEN} = 47.18$

 $SS_{WITHIN} = 35.79$


$$SS_{TOTAL} = \Sigma Y^2 - \frac{(\Sigma Y)^2}{N}$$

Participant	A ₁ scores	A ₂ scores	A ₃ scores
1	2	3	5
2	1	4	4
3	3	5	6
4	2	6	5
5	2	3	3
6	1	5	6
7	4	7	7
8	3	3	6
9	2	5	6
Total	20	41	48

40

$$SS_{TOTAL} = \Sigma Y^2 - \frac{(\Sigma Y)^2}{N}$$

$$SS_{TOTAL} = 523 - \frac{(109)^2}{27}$$

$$SS_{TOTAL} = 523 - \frac{11881}{27}$$

 $SS_{TOTAL} = 523 - 440.03$

 $SS_{TOTAL} = 82.97$

SS-Total

Participant	A _{1²} scores	A ₂ ² scores	A ₃ ² scores
1	$2^2 = 4$	3² = 9	5² = 25
2	1 ² = 1	$4^2 = 16$	$4^2 = 16$
3	$3^2 = 9$	5 ² = 25	6² = 36
4	$2^2 = 4$	$6^2 = 36$	5 ² = 25
5	$2^2 = 4$	$3^2 = 9$	3 ² = 9
6	1²= 1	5 ² = 25	6² = 36
7	$4^2 = 16$	$7^2 = 49$	$7^2 = 49$
8	$3^2 = 9$	$3^2 = 9$	6² = 36
9	$2^2 = 4$	5 ² = 25	6² = 36
Total	20	41	48

41

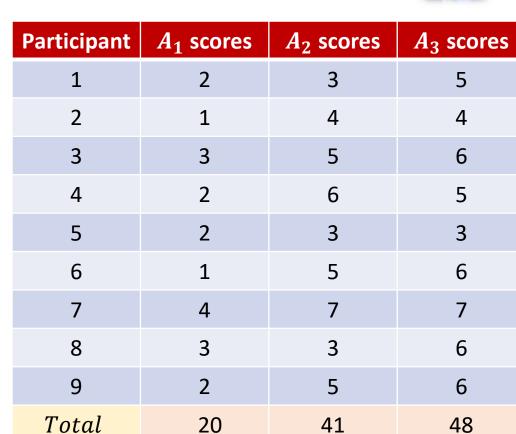
Participant	A ₁ scores	A ₂ scores	A ₃ scores
1	2	3	5
2	1	4	4
3	3	5	6
4	2	6	5
5	2	3	3
6	1	5	6
7	4	7	7
8	3	3	6
9	2	5	6
Total	20	41	48

 $SS_{BETWEEN} = 47.18$

 $SS_{WITHIN} = 35.79$

 $SS_{TOTAL} = 82.97$

Savage Chickens by Doug Savage 2 Inm In(n-m) 21n2n @ 2 007 84 Dove Savace STOP BEING SO DIFFICULT www.savagechickens.com



PSYC214: Statistics Lecture 4 – One-factor within-participants ANOVA – Part III

Michaelmas Term Dr Sam Russell s.russell1@lancaster.ac.uk

 $SS_{BETWEEN} = 47.18$

 $SS_{WITHIN} = 35.79$

 $SS_{TOTAL} = 82.97$

- 22	$(\Sigma P_1)^2 + (\Sigma P_2)^2$ (and so on)	$(\Sigma Y)^2$
$SS_{between \ participants} =$	N _P	\overline{N}

45

SS-be	etween	partic	ipants	$SS_{between \ participants} = \frac{(\Sigma P_1)^2 + (\Sigma P_2)^2 (and \ so \ on)}{N_P} \frac{(\Sigma Y)^2}{N}$
Participant	A ₁ scores	A ₂ scores	A ₃ scores	P total
1	2	3	5	10
2	1	4	4	9
3	3	5	6	14
4	2	6	5	13
5	2	3	3	8
6	1	5	6	12
7	4	7	7	18
8	3	3	6	12
9	2	5	6	13
Total	20	41	48	109 46

 $(\Sigma Y)^2$

Ν

 $(\Sigma P_1)^2 + (\Sigma P_2)^2$ (and so on)

 N_P

SS-between participants

Participant	A ₁ scores	A ₂ scores	A ₃ scores	P total	
1	2	3	5	10	$(10^2 \ 9^2 \ 14^2 \ 13^2 \ 8^2 \ 12^2 \ 18^2 \ 12^2 \ 13^2)$ (10)
2	1	4	4	9	$\left(\frac{10^2}{3} + \frac{9^2}{3} + \frac{14^2}{3} + \frac{13^2}{3} + \frac{8^2}{3} + \frac{12^2}{3} + \frac{18^2}{3} + \frac{12^2}{3} + \frac{12^2}{3} + \frac{13^2}{3}\right) - \frac{(10^2)^2}{2}$
3	3	5	6	14	
4	2	6	5	13	$\left(\frac{100}{3} + \frac{81}{3} + \frac{196}{3} + \frac{169}{3} + \frac{64}{3} + \frac{144}{3} + \frac{324}{3} + \frac{144}{3} + \frac{169}{3}\right) - \frac{(140)}{3}$
5	2	3	3	8	
6	1	5	6	12	(33.33 + 27 + 65.33 + 56.33 + 21.33 + 48 + 108 + 48 + 56
7	4	7	7	18	- 440.03
8	3	3	6	12	463.67 - 440.03
9	2	5	6	13	= 23.64
Total	20	41	48	109	

 $SS_{between \ participants} =$

Participant	A ₁ scores	A ₂ scores	A ₃ scores
1	2	3	5
2	1	4	4
3	3	5	6
4	2	6	5
5	2	3	3
6	1	5	6
7	4	7	7
8	3	3	6
9	2	5	6
Total	20	41	48

 $SS_{BETWEEN} = 47.18$

$$SS_{WITHIN} = 35.79$$

 $SS_{TOTAL} = 82.97$

$$SS_{between \ participants} = 23.64$$

SS_{RESIDUAL}

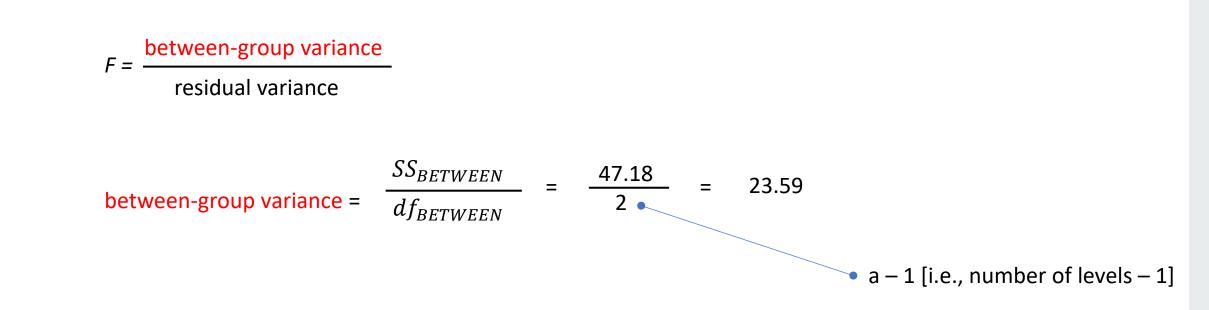
 $SS_{RESIDUAL} = SS_{WITHIN} - SS_{between participants}$ 12.15 = 35.79 - 23.64

Participant	A ₁ scores	A ₂ scores	A ₃ scores
1	2	3	5
2	1	4	4
3	3	5	6
4	2	6	5
5	2	3	3
6	1	5	6
7	4	7	7
8	3	3	6
9	2	5	6
Total	20	41	48

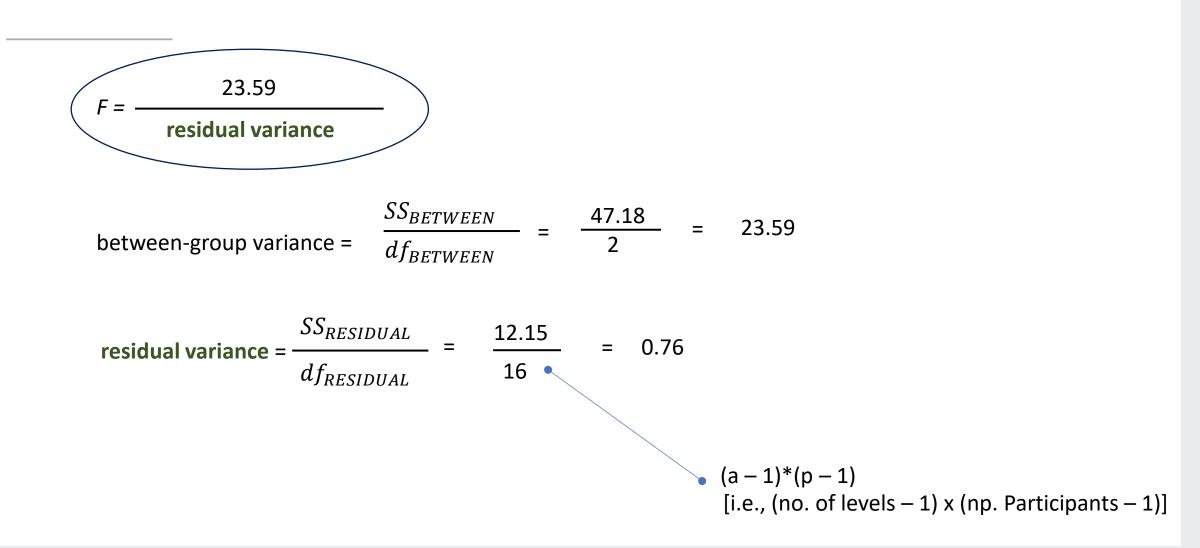
 $SS_{BETWEEN} = 47.18$

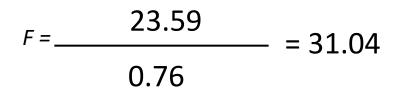
 $SS_{WITHIN} = 35.79$

 $SS_{TOTAL} = 82.97$


 $SS_{between \, participants} = 23.64$

$$SS_{RESIDUAL}$$
 = 12.15





	DF1	α = 0.05																	
DF2	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	Inf
1	161.45	199.5	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	243.91	245.95	248.01	249.05	250.1	251.14	252.2	253.25	254.31
2	18.513	19	19.164	19.247	19.296	19.33	19.353	19.371	19.385	19.396	19.413	19.429	19.446	19.454	19.462	19.471	19.479	19.487	19.496
3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123	8.7855	8.7446	8.7029	8.6602	8.6385	8.6166	8.5944	8.572	8.5494	8.5264
4	7.7086	6.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.041	5.9988	5.9644	5.9117	5.8578	5.8025	5.7744	5.7459	5.717	5.6877	5.6581	5.6281
5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725	4.7351	4.6777	4.6188	4.5581	4.5272	4.4957	4.4638	4.4314	4.3985	4.365
6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.099	4.06	3.9999	3.9381	3.8742	3.8415	3.8082	3.7743	3.7398	3.7047	3.6689
7	5.5914	4.7374	4.3468	4.1203	3.9715	3.866	3.787	3.7257	3.6767	3.6365	3.5747	3.5107	3.4445	3.4105	3.3758	3.3404	3.3043	3.2674	3.2298
8	5.3177	4.459	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881	3.3472	3.2839	3.2184	3.1503	3.1152	3.0794	3.0428	3.0053	2.9669	2.9276
9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789	3.1373	3.0729	3.0061	2.9365	2.9005	2.8637	2.8259	2.7872	2.7475	2.7067
10	4.9646	4.1028	3.7083	3.478	3.3258	3.2172	3.1355	3.0717	3.0204	2.9782	2.913	2.845	2.774	2.7372	2.6996	2.6609	2.6211	2.5801	2.5379
11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.948	2.8962	2.8536	2.7876	2.7186	2.6464	2.609	2.5705	2.5309	2.4901	2.448	2.4045
12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.7964	2.7534	2.6866	2.6169	2.5436	2.5055	2.4663	2.4259	2.3842	2.341	2.2962
13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144	2.671	2.6037	2.5331	2.4589	2.4202	2.3803	2.3392	2.2966	2.2524	2.2064
14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458	2.6022	2.5342	2.463	2.3879	2.3487	2.3082	2.2664	2.2229	2.1778	2.1307
15	4.5431	2 6922	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.5876	2.5437	2.4753	2.4034	2.3275	2.2878	2.2468	2.2043	2.1601	2.1141	2.0658
16	4.494	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377	2.4935	2.4247	2.3522	2.2756	2.2354	2.1938	2.1507	2.1058	2.0589	2.0096
17	4.4513	3.5915	3.1968	2.9647	2.81	2.6987	2.6143	2.548	2.4943	2.4499	2.3807	2.3077	2.2304	2.1898	2.1477	2.104	2.0584	2.0107	1.9604
18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.4563	2.4117	2.3421	2.2686	2.1906	2.1497	2.1071	2.0629	2.0166	1.9681	1.9168
19	4.3807	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435	2.4768	2.4227	2.3779	2.308	2.2341	2.1555	2.1141	2.0712	2.0264	1.9795	1.9302	1.878
20	4.3512	3.4928	3.0984	2.8661	2.7109	2.599	2.514	2.4471	2.3928	2.3479	2.2776	2.2033	2.1242	2.0825	2.0391	1.9938	1.9464	1.8963	1.8432
21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.366	2.321	2.2504	2.1757	2.096	2.054	2.0102	1.9645	1.9165	1.8657	1.8117
22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.3419	2.2967	2.2258	2.1508	2.0707	2.0283	1.9842	1.938	1.8894	1.838	1.7831
23	4.2793	3.4221	3.028	2.7955	2.64	2.5277	2.4422	2.3748	2.3201	2.2747	2.2036	2.1282	2.0476	2.005	1.9605	1.9139	1.8648	1.8128	1.757
24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.3002	2.2547	2.1834	2.1077	2.0267	1.9838	1.939	1.892	1.8424	1.7896	1.733
25	4.2417	3.3852	2.9912	2.7587	2.603	2.4904	2.4047	2.3371	2.2821	2.2365	2.1649	2.0889	2.0075	1.9643	1.9192	1.8718	1.8217	1.7684	1.711
26	4.2252	3.369	2.9752	2.7426	2.5868	2.4741	2.3883	2.3205	2.2655	2.2197	2.1479	2.0716	1.9898	1.9464	1.901	1.8533	1.8027	1.7488	1.6906
27	4.21	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.2501	2.2043	2.1323	2.0558	1.9736	1.9299	1.8842	1.8361	1.7851	1.7306	1.6717
28	4.196	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.236	2.19	2.1179	2.0411	1.9586	1.9147	1.8687	1.8203	1.7689	1.7138	1.6541
29	4.183	3.3277	2.934	2.7014	2.5454	2.4324	2.3463	2.2783	2.2229	2.1768	2.1045	2.0275	1.9446	1.9005	1.8543	1.8055	1.7537	1.6981	1.6376
30	4.1709	3.3158	2.9223	2.6896	2.5336	2.4205		2.2662	2.2107	2.1646		2.0148	1.9317	1.8874	1.8409				1.6223
40	4.0847	3.2317	2.8387	2.606	2.4495	2.3359	2.249	2.1802	2.124	2.0772	2.0035	1.9245	1.8389	1.7929	1.7444	1.6928			1.5089
60	4.0012	3.1504	2.7581	2.5252	2.3683	2.2541	2.1665	2.097	2.0401	1.9926	1.9174	1.8364	1.748	1.7001	1.6491	1.5943	1.5343	1.4673	1.3893
120		3.0718	2.6802	2.4472	2.2899	2.175		2.0164	1.9588	1.9105	1.8337	1.7505	1.6587	1.6084	1.5543	1.4952	1.429		1.2539
Inf	3.8415	2.9957	2.6049	2.3719	2.2141	2.0986	2.0096	1.9384	1.8799	1.8307	1.7522	1.6664	1.5705	1.5173	1.4591	1.394	1.318	1.2214	1

Lecture 4 – One-factor within-participants ANOVA

Review of lecture 4

- Introduction to one factor withinparticipants ANOVA and its limitations
- Between-participant variability and residual variance
- Calculating within-group and between group variances
- Producing the within-participants Fstatistic

